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1 Introduction

With the running of the LHC at CERN Geneva, a TeV energy era begins and re-

searchers are anxiously expecting a possible new revolution in particle physics. There

are various predictions from both the Standard Model (SM) and new physics models.

Among these the appearance of possible new underlying interactions beyond conventional

strong/weak/electromagnetic gauge interactions is of special interest. From knowledge ac-

cumulated in resent years in particle physics, we know that the expected new interactions

at least must govern the electroweak symmetry breaking that result in the massive W±

and Z0 bosons and may further be responsible for the origin of masses for ordinary quarks

and leptons. Theoreticians have also touted various ambitious alternative sources of these

new interactions, such as unifications, supersymmetries, and extra dimensions. With the

exception of the well-known scalar-type interactions which suffer unnaturalness, triviality

and hierarchy problems, the typical new interaction that avoids the shortcomings of ele-

mentary scalar fields is a gauge interaction and minimal such kind of interaction involves

an additional so-called U(1)′ gauge interaction. In most instances this extra U(1)′ gauge

force is a ”relic” of some larger underlying new physics gauge interactions such as those

occurring in GUT models, string theories, left-right symmetric models and models decon-

structed from extra space dimensions. Alternatively, in some special models, the U(1)′

gauge force takes on a special role: for example 1) in little Higgs type models, it can par-

tially remove the quadratic divergence from the SM Higgs mass at the one loop level [1]; 2)

in topcolor-assisted technicolor (TC2) models, it ensures top quark condensation while not

for the bottom quark [2–4]; 3) in SUSY models, it can mediate SUSY breaking [5]; and 4)

in models based on string theory, it mediates particles communicating between the hidden

and visible sectors [6]. This represents but a sampling of new physics models involving

additional U(1)′ factors: a recent review of others can be found in ref. [7].
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Phenomenologically, we are interested in the possibility of experimentally finding the

carrier, an electrically-neutral color singlet spin-one boson Z ′, of this additional gauge

force especially at the LHC. As a detection has not been made so far, this boson has to

be massive and the corresponding U(1)′ gauge symmetry must be violated. The more

preferred and exciting experimental finding would be that the Z ′ mass is relatively light

compared with the other new physics particles, for then it might arise as a first signature of

the new physics beyond SM at the LHC. This prospect heightens the need for theoretical

studies of such a light Z ′ boson and its interactions with known particles would also be of

the special importance in new physics research.

Physically, one main effect of the Z ′ boson derives from its mixings with conventional

Z boson and γ photon; another stems from its gauge couplings to ordinary quarks and

leptons, which leads to various charge assignments. There exist a diversity of new physics

models involving the Z ′ boson, each model has its own arrangement of Z ′ −Z − γ mixings

and Z ′ coupling to ordinary quarks and leptons. To compare models, a model independent

investigation is needed of these Z’ boson interactions with known particles, particularly in

classifying and comparing the role of the Z’ boson within each model. The electroweak

chiral Lagrangian (EWCL) method provides such a platform to perform model independent

research. In our previous paper [8], we have written down the bosonic part up to order

p4 of the most genral EWCL involving the Z ′ boson1 and known particles. This EWCL

also describes the most general Z ′−Z −γ mixings, and with it we can further classify

the various Z ′−Z−γ mixings that appear in each model enabling us to compare and

discriminate between the different new physics models.2 Here the classification categorizes

the general Z ′−Z−γ mixings into several simplifying cases that appear in the new physics

models in the literature. The reason in doing this is because the general Z ′−Z−γ mixings

is too complex to be discussed analytically, while we will show that for all simplifying

cases presented in this paper, mixings can be diagonalized exactly. This improves on

the approximate diagonalization result usually used in the literature and we can exhibit

explicitly the relationship between the various simplifying cases. The main purpose of this

paper is to present these findings and moreover to generalize the EWCL given in ref. [8] to

include the Z ′ boson couplings to ordinary quarks and leptons for the most general charge

assignments. In terms of these charges, new physics models involving the Z ′ boson can also

be classified. Because most of the experimental searches for the Z ′ boson depend heavily

on these charge assignments and on how Z ′ mixes with Z and γ, we combine a discussions

on these two issues in present paper.

This paper is organized as follows. In section 2, we first give a short review of the

bosonic part of the EWCL involving the Z ′ boson and general Z ′−Z−γ mixings. In

section 3, we classify the various models involving the Z ′ boson that have appear in the

literatures according to their arrangements of the Z ′−Z−γ mixings. In section 4, we set

1In the Lagrangian, terms involving a neutral Higgs boson that only plays a passive role are also included

to help in matching unitarity requirements within the theory.
2It should be emphasized that a p4 order EWCL provides some special degrees of freedom for the Z′−Z−γ

mixings. For example, all kinetic mixings are from p4 order terms in EWCL (see eq. (2.9)), as a p2 order

EWCL only cannot offer the most general Z′−Z−γ mixings.
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up the general Z ′ boson charge assignments to the ordinary quarks and leptons in terms

of the anomaly cancellation conditions. Section 5 provides a summary of the paper.

2 The bosonic part of the EWCL involving the Z′ boson and Z′
−Z−γ

mixings

As given in ref. [8], the covariant derivative in the EWCL including the Z ′ boson is

DµÛ = ∂µÛ + igWµÛ − iÛ
τ3

2
g′Bµ − iÛ (g̃′Bµ + g′′Xµ)I , (2.1)

where the two by two unitary field Û represents four Goldstone boson degrees of freedom

resulting from spontaneous symmetry breaking of SU(2)L⊗U(1)Y ⊗U(1)′ → U(1)em, and g̃′

is a Stueckelberg-type coupling constant associated with which is a special kind of U(1). To

help in understanding this choice of covariant derivative, we denote SU(2)L⊗U(1)Y ⊗U(1)′

group elements as (eiθ
ata

L
+iθ′t′ , eiθt) for which the Hermitian matrices taL (θa) with a = 1, 2, 3,

t (θ) and t′ (θ′) are generators (group parameters) of SU(2)L, U(1)Y and an extra U(1)′

respectively. The electromagnetic U(1)em group generator has now been generalized from

its traditional expression to tem ≡ t3L+t+ct′ depending on an additional arbitrary parameter

c. This generator results in the U(1)em group element (eiθem(t3
L
+ct′), eiθemt) and we can label

the representative element for the corresponding coset by (Û , 1). Group theory tells us that

each symmetry breaking generator corresponds to a coset which can be represented by

introducing a representative element for each coset. Denoting the representative element

by n, its transformation rule to n′ under the action of an arbitrary group element g is then

gn = n′h where h is an element belonging to the un-broken subgroup. Specifically for the

above gauge group, this transformation rule then stipulates that

(eiθ
ata

L
+iθ′t′ , eiθt)(Û , 1)

gn=n′h
===== (eiθ

ata
L
+iθ′t′Ûe−iθ(t

3
L
+ct′)

︸ ︷︷ ︸

Û ′

, 1) (eiθ(t
3
L

+ct′), eiθt)
︸ ︷︷ ︸

U(1)em

(2.2)

which yields the following transformation rule for the Goldstone field Û under SU(2)L ⊗
U(1) ⊗ U(1)′

Û ′ = eiθ
ata

L
+iθ′t′ Û e−iθ(t

3
L
+ct′) . (2.3)

The choice of the Goldstone field in the two dimensional internal space corresponds in

taking the generator taL = τa/2, t = t′ = 1 (Note, according to our arrangement of group

elements, t and t′ act on different spaces, so t = t′ = 1 will not cause confusion). With (2.3)

and the standard SU(2)L ⊗U(1)Y ⊗U(1)′ transformation rule for electroweak gauge fields

Wµ, Bµ and the extra U(1)′ gauge field Xµ, we derive the action of the covariant derivative

on the Goldstone field Û as: DµÛ = ∂µÛ + i(gWµ + gXXµ)Û − iÛ( τ
3

2 g′ + cg′)Bµ. Further

identifying gX ≡ −g” and cg′ ≡ g̃′, we obtain the result given in eq. (2.1). With symmetry

breaking pattern SU(2)L⊗U(1)Y ⊗U(1)′ → U(1)em, the Higgs mechanism ensures that the

Goldstone bosons represented by the Û field will be eaten out by the electroweak gauge

bosons W±, Z0 and Z ′ which then acquire mass. Here Wµ, Bµ and Xµ are respectively the

gauge fields of SU(2)L, U(1)Y and U(1)′ before mixing.

– 3 –
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The full bosonic part of the Lagrangian up to order p4 is

LStueck−SU(2)L⊗U(1)Y ⊗U(1)′→U(1)em = L0 + L2 + L4 , (2.4)

with each term in the Lagrangian defined as

L0 = −V (h) , (2.5)

L2 =
1

2
(∂µh)2 − 1

4
f2tr[V̂µV̂

µ] +
1

4
β1f

2tr[T V̂µ]tr[T V̂ µ] +
1

4
β2f

2tr[V̂µ]tr[T V̂ µ]

+
1

4
β3f

2tr[V̂µ]tr[V̂
µ] + β4f(∂µh)tr[V̂µ] , (2.6)

L4 = LK + LB + LH + LA , (2.7)

where T ≡ Ûτ3Û
† and V̂µ ≡ (D̂µÛ)Û †. Here the Higgs field h is treated as p0 order and

LK = −1

4
BµνB

µν − 1

2
tr[WµνW

µν ] − 1

4
XµνX

µν

LB =
1

2
α1gg′Bµνtr[TW µν ] +

i

2
α2g

′Bµνtr[T [V̂ µ, V̂ ν ]] + iα3gtr[W µν [V̂ µ, V̂ ν ]] + . . .

LH = (∂µh)
{

αH,1tr[T V̂ µ]tr[V̂ν V̂
ν ]

+αH,2tr[T V̂ν ]tr[V̂
µV̂ ν ] + αH,3tr[T V̂ν ]tr[T [V̂ µ, V̂ ν ]] + . . .

}

.

All coefficients in above Lagrangian are functions of Higgs field h. Detailed expressions

can be found in ref. [8].

Mixings among Z ′−Z−γ come from the gauge boson mass term LM and kinetic term

LK . In the unitary gauge Û = 1, they become

LM,Z′−Z−γ =
f2

8
(1−2β1)(gW 3

µ− g′Bµ)
2 +

f2

2
(1−2β3)(g

′′Xµ+ g̃′Bµ)
2

+
f2

2
β2(g

′′Xµ + g̃′Bµ)(gW 3,µ − g′Bµ) , (2.8)

LK,Z′−Z−γ = −1

4
BµνBµν −

1

4
XµνX

µν − 1

4
(1−α8g

2)(∂µW
3
ν − ∂νW

3
µ)2 (2.9)

+
1

2
α1gg′Bµν(∂µW

3
ν − ∂νW

3
µ) + gg′′α24X

µν(∂µW
3
ν − ∂νW

3
µ)

+g′g′′α25BµνX
µν .

Apart from the four gauge couplings g, g′, g′′, g̃′, seven extra dimensionless parameters

β1, β2, β3 and α1, α8, α24, α25 determine the mixing terms. Of these eleven, α8 can be

absorbed into the redefinition of field W 3
µ and coupling constant g by

W 3
µ →

W 3
µ

√

1 − α8g2
g → g

√

1 − α8g2 . (2.10)

Hence we are left with ten parameters, and on eliminating the three gauge couplings g, g′, g′′,

leaves us seven independent parameters g̃′, β1, β2, β3, α1, α24, α25 that are related to mix-

ings. However, the mixing masses and kinetic terms given by (2.8) and (2.9) are so complex

that to diagonalize them we must exploit the general 3 × 3 rotation matrix Uij

(W 3
µ , Bµ, Xµ)

T = U(Zµ, Aµ, Z ′
µ)
T , (2.11)

– 4 –
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which has nine matrix elements. The fact that no correction terms arise for the kinetic

terms −1
4BµνBµν and −1

4XµνX
µν leads to two constraints on the matrix elements of U ,

(U−1,TU−1)22 = (U−1,TU−1)33 = 1 , (2.12)

which imply that there are only seven independent matrix elements. This is consistent with

the earlier result that there are at most seven parameters g̃′, β1, β2, β3, α1, α24, α25 related

to mixings. In ref. [8], we had obtained a set of relations between matrix elements Uij and

parameters g, g′, g′′, g̃′, β1, β2, β3, α1, α8, α24, α25 as follows

U ≡






1
2g cα

1
2g − 1

2gsα

− 1
2g′ cα

1
2g′

1
2g′ sα

1
g′′

(sα + g̃′

2g′ cα) − g̃′

2g′′g′
1
g′′

(cα − g̃′

2g′ sα)











cβ
A1

0
sβ

A1

ga gb gc

− sβ

A2
0

cβ
A2











MZ

f
0 0

0 1 0

0 0
MZ′

f




 , (2.13)

where cα ≡ cos αZ′ , sα ≡ sin αZ′ , sβ = sin βZ′ , cβ = cos βZ′ as well as the

following definitions

A2
1 =

1

4
(1−2β1)c

2
α + β2sαcα + (1−2β3)s

2
α

A2
2 =

1

4
(1−2β1)s

2
α − β2sαcα + (1 − 2β3)c

2
α , (2.14)

tan αZ′ =
3 + 2β1 − 8β3 −

√

(3 + 2β1 − 8β3)2 + 16β2
2

4β2

tan βZ′ =
−G2 +

√

G2
2 + 4G2

0

2G0
(2.15)

a =
1

gA1A2[g′
2g′′2 − g2g′2g′′2(2α1 + α8) + g2g′′2 − 4g2g′g′′2g̃′(α24 + α25) + g2g̃′2]

×
{

[g2g′′
2
+ g2g̃′2 − g′2g′′

2
+ g2g′2g′′

2
α8 + 4g2g′g′′

2
g̃′α25](sαsβA1 + cαcβA2)

+[2g2g′g̃′ + 4g2g′2g′′
2
(α24 + α25)](−cαsβA1 + sαcβA2)

}

.

b2 =
4g′2g′′2

(g2 + g′2)g′′2 + g2g̃′2 − g2g′2g′′2(2α1 + α8) + 4g2g′g′′2g̃′(α24 + α25)
.

c =
1

gA1A2[g′
2g′′2 − g2g′2g′′2(2α1 + α8) + g2g′′2 − 4g2g′g′′2g̃′(α24 + α25) + g2g̃′2]

×
{

[g2g′′
2
+ g2g̃′2 − g′2g′′

2
+ g2g′2g′′

2
α8 + 4g2g′g′′

2
g̃′α25](−sαcβA1 + cαsβA2)

+[2g2g′g̃′ + 4g2g′2g′′
2
(α24 + α25)](cαcβA1 + sαsβA2)

}

.
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G0 = −A1A2

{

(−g2−g′2+g′′
2
+(g̃′)2)cαsα +g′g̃′(s2

α − c2
α) + g2[2g′2cαsα + g′g̃′(c2

α − s2
α)]α1

+g2[(g′2−g′′
2−(g̃′)2)cαsα−g′g̃′(s2

α−c2
α)]α8 + 2g2g′′

2
(c2
α − s2

α)(α24 + g′2α1α25)

+g′′
2
[−4g′g̃′cαsα + 2g′2(c2

α − s2
α)][g

2(α8α25 − α1α24) − α25] + g2g′′
2
[8g′2sαcα

+4g′g̃′(c2
α − s2

α)]α24α25 + g2g′2g′′
2
sαcα(4α2

25 − α2
1)

+4g2g′′
2
(g′sα + g̃′cα)(g′cα − g̃′sα)α

2
24

}

G2 = A2
1

{

(g2 + g′2)c2
α + (g′′

2
+ (g̃′)2)s2

α(1 − g2α8) − g2g′2c2
α(2α1 + α8)

+4g′g′′
2
g̃′s2

αα25 − 4g2g′2g′′
2
c2
α(α2

24 + α2
25 + 2α24α25)

−g2g′′
2
s2
α[g

′2α2
1 + 4(g̃′)2α2

24 + 4g′g̃′(α8α25 − α1α24)]
}

−[A1 → A2, cα ↔ sα] + sαcα(A2
1 + A2

2)
{

− 2g′g̃′[1 − g2(α1 + α8)]

+4g2g′′
2
[(α24 − α25)(1 − g′′

2
α1) + 2g′g̃′α2

24 + g′′
2
α8α25]

}

. (2.16)

Finally the masses of Z and Z ′ bosons are determined from

K11 = −1

4
K33 = −1

4
, (2.17)

with

K ≡ UT






−1
4(1 − α8g

2) 1
4α1gg′ 1

2gg′′α24
1
4α1gg′ −1

4
1
2g′g′′α25

1
2gg′′α24

1
2g′g′′α25 −1

4




U . (2.18)

General expressions for the mixing matrix elements Uij are too complicated to be written

analytically. In ref. [8], we listed results for Uij , MZ and MZ′ expanded up to order p4 and

linear in g̃′. In real new physics models appearing in the literature, the Z ′−Z−γ mixings

are often not so complex. In the next section, we identify and discuss typical Z ′−Z−γ

mixings appearing in various new physics models.

3 Classification of models in terms of their Z′
−Z−γ mixings

In this section, we organize the various new physics models that can be found in the

literature involving the Z ′ boson according to their Z ′−Z−γ mixings. Unlike the most

general case reviewed in the last section, these mixings are special Z ′−Z−γ mixings for

which the mixing matrix elements Uij and MZ , MZ′ can all be work out exactly. Below

we consider five situations.

1. Minimal Z ′−Z mass mixing [1, 9–21]:

This kind of model provides minimal mixing by ignoring all mixings in the kinetic

terms and Z−γ, Z ′−γ mixings in the mass terms. They correspond to the vanishing

five parameters

g̃′ = α1 = α8 = α24 = α25 = 0 . (3.1)

– 6 –
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With the exception of gauge couplings g, g′, g′′, the remaining three nontrivial pa-

rameters are denoted by the Z ′−Z mass matrix

M2 =

(

M2
Z0

M2
ZZ′

M2
ZZ′ M2

Z′

0

)

Zµ
0 ≡

gW 3
µ− g′Bµ

√

g2+ g′2
Aµ

0 ≡
g′W 3

µ+ gBµ
√

g2+ g′2
Z ′µ

0 ≡ Xµ,

(3.2)

where mass parameters M2
Z0

, M2
Z′

0
and M2

ZZ′ are related to β1, β2, β3 as

f2

4
(1−2β1)(g

2+g′2) ≡ M2
Z0

f2(1−2β3)g
′′2 ≡ M2

Z′

0

f2

2
β2g

′′
√

g2+g′2 ≡ M2
ZZ′ .

(3.3)

refs. [19, 20] use an alternative expression which corresponds to setting

f = vH g′ = gY g′′ = gz β1 = 0 β2 = −1

2
zH 1 − 2β3 =

1

4

(

z2
H +

v2
φ

f2

)

Ref. [21] further generalizes this which leads then to

g′= gY g′′= gz 1 − 2β1 =
v2
H1

+ v2
H2

f2
β2 = −

zH1
v2
H1

+zH2
v2
H2

2f2

1−2β3 =
1

4f2
(z2
H1

v2
H1

+z2
H2

v2
H2

+v2
φ) .

In this kind of model, the key Z ′−Z mixing parameter is β2 which yields a non-

vanishing off-diagonal element M2
ZZ′ in the Z ′−Z mass matrix. This element further

generates the seesaw splitting between the original Z and Z ′ masses,

M2
Z =

1

2

[

M2
Z0

+ M2
Z′

0
−
√

(M2
Z0

− M2
Z′

0
)2+ 4M4

ZZ′

]

≈ M2
Z0

− M4
ZZ′

M2
Z′

0
− M2

Z0

(3.4)

M2
Z′ =

1

2

[

M2
Z0

+ M2
Z′

0
+
√

(M2
Z0

− M2
Z′

0
)2+ 4M4

ZZ′

]

≈ M2
Z′

0
+

M4
ZZ′

M2
Z′

0
− M2

Z0

. (3.5)

Meanwhile the Z ′−Z mixing can be parameterized by mixing angle θ′

(

Zµ
0

Z ′µ
0

)

=

(

cos θ′ sin θ′

− sin θ′ cos θ′

)(

Zµ

Z ′µ

)

tan 2θ′ =
2M2

ZZ′

M2
Z′

0
− M2

Z0

. (3.6)

leading to a rotation matrix introduced in (2.11) of the form

UMinimal Z′
−Z mass mixing =






cos θW sin θW 0

− sin θW cos θW 0

0 0 1











cos θ′ 0 sin θ′

0 1 0

− sin θ′ 0 cos θ′






=






cos θW cos θ′ sin θW cos θW sin θ′

− sin θW cos θ cos θW − sin θW sin θ′

− sin θ′ 0 cos θ′




 , (3.7)

with an electroweak mixing angle tan θW = g′/g.
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2. Minimal Z ′−Z kinetic mixing [22–24]:

This kind of model provides minimal mixing by ignoring all mixings in the mass

terms and Z−γ, Z ′−γ mixings in the kinetic terms leading to the vanishing of seven

parameters

g̃′ = β1 = β2 = β3 = α1 = α8 = α24 = 0 . (3.8)

Again with the exception of gauge couplings g, g′, g′′, the one remaining nontrivial

parameter is denoted by

g′g′′α25 ≡ −sinχ

2
. (3.9)

following ref. [22], we redefine the gauge fields as

Bµ = Bµ
0 − tan χZ ′µ

0 Xµ =
Z ′µ

0

cos χ
, (3.10)

in terms of the fields Bµ
0 , Z ′µ

0 ,W 3µ, the kinetic term appears diagonalized and the

model reduces to a minimal Z ′ − Z mass mixing model discussed above3 with

M2
Z0

=
f2

4
(g2+g′2) M2

Z′

0
=

f2[g′2 sin2 χ+4g′′2]

4 cos2 χ
M2
ZZ′ =

f2

4
g′
√

g2+g′2 tan χ .

(3.11)

The rotation matrix introduced in (2.11) takes the form

UMinimal Z′
−Z kinetic mixing

=






1 0 0

0 1 − tan χ

0 0 1
cos χ




× UMinimal Z′

−Z mass mixing (3.12)

=






cos θ′ cos θW sin θW cos θW sin θ′

− sin θW cos θ′ + tan χ sin θ′ cos θW − sin θW sin θ′ − tan χ cos θ′

− sin θ′/ cos χ 0 cos θ′/ cos χ




 .

3. General Z ′−Z mixing [1–4, 6, 25–27]:

This kind of model is combinations of minimal Z ′−Z mass mixing model and minimal

Z ′−Z kinetic mixing model discussed above which correspond to

g̃′ = α1 = α8 = α24 = 0 g′g′′α25 ≡ −sin χ

2
. (3.13)

In a similar manner as for minimal Z ′−Z kinetic mixing model, we can use (3.10) to

remove the mixing in the kinetic term and then, in terms of the fields Bµ
0 , Z ′µ

0 ,W 3µ,

the model can be changed into a minimal Z ′−Z mass mixing model with identifications

M2
Z0

=
f2

4
(1 − 2β1)(g

2+ g′2)

M2
Z′

0
=

f2[g′2(1 − 2β1) sin2 χ + 4g′′2(1 − 2β3) + 4β2g
′g′′ sin χ]

4 cos2 χ

M2
ZZ′ =

f2

4

(1 − 2β1)g
′ sin χ + 2β2g

′′

cos χ

√

g2+ g′2 . (3.14)

3This detail was not pointed out in ref. [22].
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The resulting rotation matrix has the same form as in (3.12), the only change is that

now the θ′ as determined through (3.6) is different due to the new expressions for

M2
Z0

,M2
Z′

0
,M2

ZZ′ given by (3.14). In some dynamical models such as TC2 models,

the general Z ′−Z mixings are generated by technicolor and topcolor dynamics, as

in refs. [28–30], while mixing parameters are given through dynamical computations

depending on the nature of the TC2 models and results in the following expressions

g′g′′α25 =
g′2γ

2cZ′

f2

2
β2g

′′ =
g′

4cZ′

×







(FTC2
0 )2 tan θ′ Ref. [2, 28]

3(F 1D
0 )2 tan θ′ Ref. [3, 29]

−3(F 1D
0 )2 cot θ′ Ref. [4, 30]

, (3.15)

where all symbols appearing on the right-hand side of these results are parameters

pertaining to the TC2 models.

4. Z ′−γ kinetic and Z ′−Z mixing [31]:

B. Holdom extends the conventional Z ′−Z mixing by further adding in model a Z ′−γ

kinetic mixing term. His model corresponds to having

g̃′ = α1 = α8 = 0
f2

4
(1−2β1) = m2

Z

f2

2
β2g

′′
√

g2+ g′2 = xm2
Z f2(1−2β3)g

′′2 = m2
X

gg′′
√

g2+ g′2α24 = −1

2
(gy + g′w) gg′′

√

g2+ g′2α25 =
1

2
(g′y − gw) . (3.16)

We can diagonalize the kinetic terms by redefining the Bµ and W 3µ fields as

Bµ = Bµ
0 − sin χ

√

1 − sin2 χ − sin2 χ
Z ′µ

0 W 3µ = W 3µ
0 − sin χ

√

1 − sin2 χ − sin2 χ
Z ′µ

0

(3.17)

Xµ =
Z ′µ

0
√

1 − sin2 χ − sin2 χ
−sin χ

2
≡ g′g′′α24 − sin χ

2
≡ g′g′′α25

and then in terms of fields Bµ
0 , Z ′µ

0 ,W 3µ
0 , the model becomes the minimal Z ′−Z mass

mixing model with

M2
Z0

=
f2

4
(1 − 2β1)(g

2+ g′2)

M2
Z′

0
=

f2[14(1 − 2β1)(g
′ sin χ − g sin χ)2 + (1 − 2β3)g

′′2 + β2g
′′(g′ sin χ − g sin χ)]

1 − sin2 χ − sin2 χ

M2
ZZ′ =

f2

4

[(1 − 2β1)(g
′ sin χ − g sinχ) + 2β2g

′′]
√

1 − sin2 χ − sin2 χ

√

g2+ g′2 . (3.18)
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for which the rotation matrix introduced in (2.11) takes the form

UZ′
−γ kinetic and Z′

−Z mixing (3.19)

=








1 0 − sinχ√
1−sin2 χ−sin2 χ

0 1 − sinχ√
1−sin2 χ−sin2 χ

0 0 1√
1−sin2 χ−sin2 χ








× UMinimal Z′
−Z mass mixing

=








g cos θ′√
g2+g′2

+ sin θ′ sinχ√
1−sin2 χ−sin2 χ

g′√
g2+g′2

g sin θ′√
g2+g′2

− cos θ′ sinχ√
1−sin2 χ−sin2 χ

− g′ cos θ′√
g2+g′2

+ sin θ′ sinχ√
1−sin2 χ−sin2 χ

g√
g2+g′2

− g′ sin θ′√
g2+g′2

− cos θ′ sinχ√
1−sin2 χ−sin2 χ

− sin θ′√
1−sin2 χ−sin2 χ

0 cos θ′√
1−sin2 χ−sin2 χ








.

5. Stueckelberg-type mixing [32–34]:

This kind of model provides mixing through the nonzero coupling constant g̃′ and

except for gauge coupling g, g′, g′′, a typical choice as given in refs. [32, 33] is the

vanishing of all other parameters

β1 = β2 = β3 = α1 = α8 = α24 = α25 = 0 , (3.20)

leading to diagonal kinetic terms and mixing occurring only in the mass terms. After

rotating the standard electroweak mixing angle θW , we can redefine the gauge fields

B̄µ = − g′′
√

g2 + g′2

(g2 + g′2)g′′2 + g2g̃′2
Bµ

0 +
gg̃′

(g2 + g′2)g′′2 + g2g̃′2
Z ′µ

0

Z̄ ′µ =
gg̃′

(g2 + g′2)g′′2 + g2g̃′2
Bµ

0 +
g′′
√

g2 + g′2

(g2 + g′2)g′′2 + g2g̃′2
Z ′µ

0 (3.21)

thereby changing the present model to a minimal Z ′ − Z mass mixing model with

M2
Z0

=
f2

4
(g2 + g′2 +

4g′2g̃′2

g2 + g′2
)

M2
Z′

0
= f2(g′′

2
+

g2g̃′2

g2 + g′2
)

MZZ′ = −
f2g′g̃′

√

(g2 + g′2)g′′2 + g2g̃′2

g2 + g′2
. (3.22)

The overall rotation matrix then becomes

UStuekckelberg type mixing =






cos θW sin θW 0

− sin θW cos θW 0

0 0 1













1 0 0

0 − g′′
√
g2+g′2

(g2+g′2)g′′2+g2g̃′2
gg̃′

(g2+g′2)g′′2+g2g̃′2

0 gg̃′

(g2+g′2)g′′2+g2g̃′2
g′′
√
g2+g′2

(g2+g′2)g′′2+g2g̃′2








×






cos θ′ 0 sin θ′

0 1 0

− sin θ′ 0 cos θ′




 (3.23)
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with θ′ evaluated from the second equation of (3.6) and those of (3.22). In ref. [34], the

Stueckelberg-type mixing is further generalized to include kinetic mixing by relaxing

the original condition α25 = 0. This kinetic mixing can be diagonalized by apply-

ing (3.10) and following a similar procedure to that leading to (3.21) in diagonalizing

the mass terms.

4 The Z′ boson charges to quark and leptons

The charges for the Z ′ boson with respect to ordinary quarks and leptons can be expressed

in terms of the gauge interaction as

Lgauge coupling = g′′XµJ
µ
X JµX =

∑

i

f̄iγ
µ[y′iLPL + y′iRPR]fi , (4.1)

where index i distinguishes the three generations associated with the six quarks u, c, t, d, s, b

and six leptons e, µ, τ, νe, νµ, ντ , and y′i,L, y′i,R are the corresponding left- and right-hand

charges.4 The SU(2)L symmetry requires equating U(1)′ charges of the two components of

the left-hand fermion doublet, i.e. y′u,L = y′d,L ≡ y′q for quark and y′ν,L = y′e,L ≡ y′l for lepton.

Thus, we can parameterize the fermionic U(1)′ charges by y′q, y′u, y′d, y′l, y′e and y′ν . In

general, the assignments of U(1)′ charges are generation-dependent, but in its simplest form

U(1)′ charges can be generation-independent, much like hypercharge assignments in SM.

TABLE. 1 lists four sets of more common assignments for the generation-independent U(1)′

charges of fermions in new physics models involving Z ′ boson [21, 35]. In the U(1)B−xL
model (see column 3 of TABLE. 1), Z ′ charges are determined by the baryon number

and lepton number from y′i = Bi − xLi with a free rational parameter x. Leptophobic

and hadrophobic Z ′ models correspond to x = ∞ and x = 0, respectively. The second

set of charges comes from grand unified theories. Parameter x establishes the mixing of

the two extra U(1) groups in the E6 symmetry breaking patterns E6 → SU(5) × U(1) ×
U(1). Zχ, Zψ and Zη of ref. [36] correspond to the special case with x = −3, x = 1

and x = −1/2, respectively. The third set, U(1)d−xu results in the vanishing of the left-

hand quark doublet charge and the ratio of right-hand up quark charges to down quark

charges is controlled by −x. In the last set, the free parameter x is the ratio of the

charges of the left-hand quark doublet and right-hand up quark singlet and reduces to the

U(1)B−L model for x = 1. Theoretically, the charges of quarks and leptons must satisfy

the anomaly cancellation conditions to preserve the gauge symmetry. We now examine

the constraints on generation-independent U(1)′ charges arising as a consequence of these

anomaly cancellation conditions. Davidson et.al. [37] have studied anomaly cancellation

for additional U(1)′ gauge group and derived the following anomaly cancellation conditions

for U(1)Y ⊗ U(1)′ gauge groups

∑

yαL =
∑

Q2(yαL−yαR) = 0
∑

Q(yαLyβL−yαRyβR) = 0
∑

(yαLyβLyγL−yαRyβRyγR) = 0 ,

(4.2)

4Phenomenologically, we need to further express the gauge interaction given in eq. (4.1) in terms of mass

eigenstate of Z′, for then the Z′−Z−γ mixings discussed in the last section set in.

– 11 –



J
H
E
P
0
7
(
2
0
0
9
)
0
1
2

models Z ′ EWCL U(1)B−xL U(1)10+x5̄ U(1)d−xu U(1)q+xu
(uL, dL) y′q 1/3 1/3 0 1/3

uR y′u 1/3 −1/3 −x/3 x/3

dR y′d 1/3 −x/3 1/3 (2 − x)/3

(νL, eL) y′l −x x/3 (x − 1)/3 −1

eR y′e −x −1/3 x/3 −(2 + x)/3

νR y′νR
−1 (x − 2)/3 −x/3 (x − 4)/3

Table 1. Generation-independent U(1)′ charges for quarks and leptons.

where α, β, γ indexes U(1)Y and U(1)′ charges. Substituting the U(1)Y charges for ordinary

quarks and leptons and assuming the generation-independence of U(1)′ charges, we find

that above equations imply







y′l + 3y′q = 0

3y′l + 5y′q − 3y′e − 4y′u − y′d = 0

−y′l
2 + y′q

2 + y′e
2 − 2y′u

2 + y′d
2 = 0

3y′l + y′q − 6y′e − 8y′u − 2y′d = 0

2y′l
3 + 6y′q

3 − y′e
3 − 3y′u

3 − 3y′d
3 − y′νR

3 = 0

. (4.3)

The last equation in (4.3) can be satisfied by assigning y′νR
a proper value or adding in

our theory some other new fermions. Solving the above equations, we obtain two sets of

solutions which satisfy the anomaly cancellation conditions







y′l = −3y′q
y′d = 2y′q − y′u
y′e = −2y′q − y′u
y′νR

= −4y′q + y′u

or







y′l = −3y′q
y′d = −14

5 y′q + 1
5y′u

y′e = −2
5y′q − 7

5y′u
y′νR

=
3
√

35
5 (4y′q − y′u)

. (4.4)

Of the six of U(1)′ charges, only two of them y′q and y′u are independent; the other four being

linear combinations of these two. In addition, there are two kinds of linear combinations:

the first of eq. (4.4) which was given and discussed in detail in ref. [19], while the second

is a new solution having not yet appeared in the literature. We can utilize the values of y′q
and y′u to classify the new physics models and in the following we list some typical cases:

1. Left Handed: y′u = y′d = y′e = y′νR
= 0 ⇒ y′q = y′l = 0

2. Right Handed: y′q = y′l = 0 ⇒ y′d= −y′u= y′e= −y′νR
or y′d= 1

5y′u= −1
7y′e= − 1

3
√

35
y′νR

3. Left-Right symmetric: y′q = y′u = y′d ⇒ y′l = y′e = y′νR
= −3y′q

4. νR decouple: y′νR
= 0 ⇒ y′u = 4y′q, y′e = 2y′l = 3y′d = −6y′q

Checking the assignments given in TABLE. 1 against the two solutions in (4.4), we find

that the U(1)B−xL, U(1)d−xu and U(1)q+xu models are anomaly-free when parameter x = 1

with the right-hand neutrino charge y′νR
= −1, y′νR

= −1
3 and y′νR

= −1, respectively.
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models U(1)B−xLe−yLµ
U(1)10+x5̄ gen−dep U(1)d−xu gen−dep U(1)q+xu+yc+zt 2+1 leptocratic

q1,L 1/3 1/3 0 1/3 1/3

uR 1/3 −1/3 −x/3 x/3 x/3

dR 1/3 −x/3 1/3 (2 − x)/3 (2 − x)/3

q2,L 1/3 1/3 0 1/3 1/3

cR 1/3 −1/3 −y/3 y/3 x/3

sR 1/3 −y/3 1/3 (2 − y)/3 (2 − x)/3

q3,L 1/3 1/3 0 1/3 1/3

tR 1/3 −1/3 2− 2
3
(x+y)±

p

3−x2−y2 z/3 x/3

bR 1/3 3 + x+y

3
1/3 (2 − z)/3 (2 − x)/3

(νe
L, eL) −x x/3 (x − 1)/3 −1 −1 − 2y

eR −x −1/3 x/3 −(2 + x)/3 −(2+x)/3 − 2y

(νµ
L, µL) −y y/3 (y − 1)/3 −1 y − 1

µR −y −1/3 y/3 −(2 + y)/3 −(2+x)/3 + y

(ντ
L, τL) x + y − 3 3 + x+y

3
2
3
− 1

3
(x + y) −1 y − 1

τR x + y − 3 −1/3 x+y−3∓ 4
3

p

3−x2−y2 −(2 + z)/3 −(2 + x)/3 + y

Table 2. Generation-dependent charge.

Furthermore, the U(1)10+x5̄ model is anomaly-free when x = −3 with y′νR
= −5/3. Even

though the anomaly cancellation condition can not be satisfied with the present quarks

and leptons, we still have the possibility of canceling the anomalies by adding some extra

fermions into theory.

If we relax the generation-independence criterion on the U(1)′ charges, we need to add

generation indices to each of the charges in eq. (4.3) and sum over the generations on the

left-hand side of eq. (4.3). In this case, there are too many free parameters and solutions.

We list several possible solutions in TABLE. 2, in which the first and last columns are the

two solutions given in ref. [35], and the remaining solutions can be seen to be some kind of

generation-dependent generalization of charge assignments given in the third, fourth and

fifth columns in TABLE. 1. The typical feature of these solutions is that for the solutions

given in the first four columns of TABLE. 2, the charges for the first two generations are

parameterized in a like manner as those in the generation-independent situation by x or y

separately, and differences appear only in the third generation of quarks and leptons. Of

special note is that for the solution to U(1)q+xu+yc+zt, the anomaly cancellation condition

is satisfied for each generation independently.

5 Summary

In this paper, we have classified various new physics models involving the Z ′ boson in two

different ways: one according to Z ′ boson mixings with Z and γ, and the other according

to Z ′ boson charges with respect to quarks and leptons. In regard to the former, we

based the general description for the Z ′−Z−γ mixing derived from the EWCL on our

previous work [8], characterizing these new physics models into five classes: 1. Models

with minimal Z ′−Z mass mixing; 2.Models with minimal Z ′−Z kinetic mixing; 3.Models

with general Z ′−Z mixing; 4.Models with Z ′−γ kinetic and Z ′−Z mixing; and 5.Models with

Stueckelberg-type mixing. Although the general Z ′−Z−γ mixing is complicated and there
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is no exact analytical expression for the mixing matrix U and masses MZ ,MZ′ , we obtain

explicit analytical expressions for each of our five simplifying classes. We find that the most

elementary mixing is the minimal Z ′−Z mass mixing, the other four classes of mixings

can be transformed into the minimal Z ′−Z mass mixing through field transformations.

In regard to the latter classification, we exploit the anomaly cancellation conditions to

constrain the U(1)′ charges. For generation-independent U(1)′ charges, there are six charges

y′q,y
′
u,y

′
d,y

′
l,y

′
e,y

′
ν for which anomaly cancellation requires that only two are independent

parameters while the other four can depend on these two parameters in two different ways.

While one appears already in the literature, the other is new. For generation-dependent

U(1)′ charges, we have listed some possible special solutions.
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[32] B. Körs and P. Nath, Aspects of the Stueckelberg extension, JHEP 07 (2005) 069

[hep-ph/0503208] [SPIRES].

– 15 –

http://dx.doi.org/10.1103/PhysRevD.54.5820
http://arxiv.org/abs/hep-ph/9604260
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9604260
http://dx.doi.org/10.1103/PhysRevLett.84.212
http://arxiv.org/abs/hep-ph/9910315
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9910315
http://dx.doi.org/10.1016/j.nuclphysb.2004.03.009
http://arxiv.org/abs/hep-ph/0401133
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0401133
http://dx.doi.org/10.1103/PhysRevD.72.075015
http://arxiv.org/abs/hep-ph/0501154
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0501154
http://arxiv.org/abs/0812.4313
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.4313
http://arxiv.org/abs/0806.0890
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.0890
http://dx.doi.org/10.1103/PhysRevD.68.035012
http://arxiv.org/abs/hep-ph/0212073
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0212073
http://dx.doi.org/10.1002/andp.200710249
http://arxiv.org/abs/hep-ph/0611174
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0611174
http://dx.doi.org/10.1103/PhysRevD.70.093009
http://arxiv.org/abs/hep-ph/0408098
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0408098
http://dx.doi.org/10.1103/PhysRevD.59.015020
http://arxiv.org/abs/hep-ph/9806397
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9806397
http://dx.doi.org/10.1103/PhysRevD.77.085033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D77,085033
http://dx.doi.org/10.1103/PhysRevLett.100.041802
http://arxiv.org/abs/0710.1632
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0710.1632
http://dx.doi.org/10.1016/0370-2693(86)91377-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B166,196
http://dx.doi.org/10.1088/0954-3899/33/1/001
http://dx.doi.org/10.1103/PhysRevD.54.4635
http://arxiv.org/abs/hep-ph/9603212
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9603212
http://dx.doi.org/10.1103/PhysRevD.77.055003
http://arxiv.org/abs/0705.0115
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.0115
http://dx.doi.org/10.1103/PhysRevD.79.015002
http://arxiv.org/abs/0811.0086
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.0086
http://dx.doi.org/10.1016/j.physletb.2009.02.005
http://arxiv.org/abs/0901.3837
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.3837
http://dx.doi.org/10.1016/0370-2693(91)90836-F
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B259,329
http://dx.doi.org/10.1088/1126-6708/2005/07/069
http://arxiv.org/abs/hep-ph/0503208
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0503208


J
H
E
P
0
7
(
2
0
0
9
)
0
1
2

[33] D. Feldman, Z. Liu and P. Nath, Probing a very narrow Z ′ boson with CDF and D0 data,

Phys. Rev. Lett. 97 (2006) 021801 [hep-ph/0603039] [SPIRES].

[34] D. Feldman, Z. Liu and P. Nath, The Stueckelberg Z ′ extension with kinetic mixing and

milli-charged dark matter from the hidden sector, Phys. Rev. D 75 (2007) 115001

[hep-ph/0702123] [SPIRES].

[35] Particle Data Group collaboration, C. Amsler et al., Review of particle physics,

Phys. Lett. B 667 (2008) 1 [SPIRES].

[36] J.L. Hewett and T.G. Rizzo, Low-energy phenomenology of superstring inspired E6 models,

Phys. Rept. 183 (1989) 193 [SPIRES];

A. Leike, The phenomenology of extra neutral gauge bosons, Phys. Rept. 317 (1999) 143

[hep-ph/9805494] [SPIRES];

P. Langacker, Grand unified theories and proton decay, Phys. Rept. 72 (1981) 185 [SPIRES].

[37] A. Davidson, M. Koca and K.C. Wali, A minimal anomaly free electroweak model for several

generations, Phys. Rev. D 20 (1979) 1195 [SPIRES].

– 16 –

http://dx.doi.org/10.1103/PhysRevLett.97.021801
http://arxiv.org/abs/hep-ph/0603039
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0603039
http://dx.doi.org/10.1103/PhysRevD.75.115001
http://arxiv.org/abs/hep-ph/0702123
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0702123
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B667,1
http://dx.doi.org/10.1016/0370-1573(89)90071-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC,183,193
http://dx.doi.org/10.1016/S0370-1573(98)00133-1
http://arxiv.org/abs/hep-ph/9805494
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9805494
http://dx.doi.org/10.1016/0370-1573(81)90059-4
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC,72,185
http://dx.doi.org/10.1103/PhysRevD.20.1195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D20,1195

	Introduction
	The bosonic part of the EWCL involving the Z' boson and Z'-Z-gamma mixings
	Classification of models in terms of their Z'-Z-gamma mixings
	The Z' boson charges to quark and leptons
	Summary

